Grouped functional time series forecasting: an application to age-specific mortality rates

نویسندگان

  • Han Lin Shang
  • Rob J Hyndman
چکیده

Age-specific mortality rates are often disaggregated by different attributes, such as sex, state and ethnicity. Forecasting age-specific mortality rates at the national and sub-national levels plays an important role in developing social policy. However, independent forecasts of agespecific mortality rates at the sub-national levels may not add up to the forecasts at the national level. To address this issue, we consider the problem of reconciling age-specific mortality rate forecasts from the viewpoint of grouped univariate time series forecasting methods (Hyndman, Ahmed, et al., 2011), and extend these methods to functional time series forecasting, where age is considered as a continuum. The grouped functional time series methods are used to produce point forecasts of mortality rates that are aggregated appropriately across different disaggregation factors. For evaluating forecast uncertainty, we propose a bootstrap method for reconciling interval forecasts. Using the regional age-specific mortality rates in Japan, obtained from the Japanese Mortality Database, we investigate the oneto ten-step-ahead point and interval forecast accuracies between the independent and grouped functional time series forecasting methods. The proposed methods are shown to be useful for reconciling forecasts of age-specific mortality rates at the national and sub-national levels, and they also enjoy improved forecast accuracy averaged over different disaggregation factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Common functional principal component models for mortality forecasting

We explore models for forecasting groups of functional time series data that exploit common features in the data. Our models involve fitting common (or partially common) functional principal component models and forecasting the coefficients using univariate time series methods. We illustrate our approach by forecasting age-specific mortality rates for males and females in Australia. 4.1 Functio...

متن کامل

Multivariate Functional Time Series Forecasting: Application to Age-Specific Mortality Rates

This study considers the forecasting of mortality rates in multiple populations. We propose a model that combines mortality forecasting and functional data analysis (FDA). Under the FDA framework, the mortality curve of each year is assumed to be a smooth function of age. As with most of the functional time series forecasting models, we rely on functional principal component analysis (FPCA) for...

متن کامل

Functional time series forecasting

We propose forecasting functional time series using weighted functional principal component regression and weighted functional partial least squares regression. These approaches allow for smooth functions, assign higher weights to more recent data, and provide a modeling scheme that is easily adapted to allow for constraints and other information. We illustrate our approaches using age-specific...

متن کامل

Robust forecasting of mortality and fertility rates: A functional data approach

We propose a new method for robust forecasting of age-specific mortality and fertility rates. To illustrate our methodology, we use annual Australian fertility rates (1921–2000) for five-year age groups (15–19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–49). The data were obtained from the Australian Bureau of Statistics and are shown as separate time series in Figure 1 (left). We convert these to f...

متن کامل

On the Detection of Trends in Time Series of Functional Data

A sequence of functions (curves) collected over time is called a functional time series. Functional time series analysis is one of the popular research areas in which statistics from such data are frequently observed. The main purpose of the functional time series is to predict and describe random mechanisms that resulted in generating the data. To do so, it is needed to decompose functional ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016